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Theiron-iron carbide equilibrium diagram labeledin general terms
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Microstructure of Ferrite




Microstructure of Pearlite
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Microstructure of martensite (x 500)




Microstructure of quenched hot rolled steel

containing 0,36% carbon showing bainite (x 200)




Martensite and bainite will temper at temperatures above
150 °C to form ferrite and spheroidal iron carbides.

Tempered Martensite Heavily Tempered
Martensite
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The nodular iron microstructure 1s due to slow solidification

rates and magnesium or cerium alloying that promotes
spherical graphite formation.

Enlarged view of graphite spheroid (x 600)




Nodular cast iron with ferrite structure

Nodular cast iron with pearlite structure
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Microstructure of ductile cast iron




Nodular cast iron




Ductile Cast Iron Parts
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Malleable Cast Iron Microstructure




Temper carbon in a malleable iron; ferrite crystals

etched (x 100)
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Malleable Cast Iron Fitting Component




Compacted graphite Iron







Graphite structure A

graphite structure B in cast iron




graphite structure C in cast iron
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eutectic white cast iron (x 100). White

Hyper

of cementite in eutectic
(cementite and pearlite)

crystals

primary




Hypo-eutectic white cast iron, cementite and

pearlite(black)

(x 100) BH =100




White Cast Iron
(Ledeburite)




White cast irons




scanning electron microscope (SEM) views 1llustrate the various
forms of graphite found in the cast iron family
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Hypoeutectoid steel
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Hypereutectoid steel
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Spheroidised Pearlite




5 Reasons To Anneal Steel

® To alter the grain structure;

® To develop formability;

® To improve machinability;

* To modify mechanical properties;

® Jo relieve residual stresses.
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proeutectod cementite plus partially

spheroidized pearlite at 500X




Before Spheroidizing After Spheroidizing
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TTT diagram for isothermal transformation of steel W 1
(1% C)

A = austenite, B = bainite,

Ms = start of martensite transformation,

M50 = 50% M, P = pearlite
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Ba
tostructure of (a), (¢), (e), and (g) as-cast and HIP material an®
(d), (f), and (h) spheroidized structure obtained according to
t| treatment of Fig. 2 for (a) and (b) 0.5Cr, (c) and (d) 1.5Cr, (
(f) 2.5Cr, and (g) and (h) 3.5Cr steels. White arrows indicate

presence of grain boundary cementite. (i) Gray-value

ttibution of microphotograph of a spheroidized microstructurg M

1 Klemm’s etching




Figure 2. Microstructure of samples {a) normalized and (b) air cooled (Nital
2% etching).




Fe 0.1wt%C (normalised)
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Fe 0.4wt%C (normalised)




Fe 0.5wt%C (quenched)




Fe 0.8wt%C (normalised)
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martensitic transformation
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austenite

Plates of martensite in an alloy which i1s rich in nickel
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Core:  proeutectoid ferrite  with a
Widmanstaetten morphology due to the
rapid rate of phase transformation during
cooling plus low carbon martensite




C1Mn6 steel microstructure

after quenching
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Carbon supersaturated plate
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Carbon diffusion into
austenite and carbide
precipitation in ferrite
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Upper Bainite Lower Bainite
Microstructure of Upper Bainite and Lower Bainite

0.5 um

Upper bainite consists of tiny cementite platelets
The microstructure of lower bainite generally oriented parallel with the long direction of
the ferrite needles. As the transformation
temperature decreases, in lower bainite, the ferrite
needles become thinner and the carbide platelets

become smaller and more closely spaced




shown at 1000X with a Nital etch, is the good
bainitic microstructure (which consists of
ferrite plus cementite in a slightly different
morphology than in tempered martensite)
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widmanstatten ferrite




widmanstatten ferrite
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Al-Si alloys differ from our "standard" phase diagram in that aluminium has
zero solid solubility in silicon at any temperature. This means that there is no
beta phase and so this phase is "replaced" by pure silicon (you can think of it
as a beta phase which consists only of silicon). So, for AI-Si alloys, the eutectic

composition is a structure of alpha+Si rather than alpha+beta.

- /
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Aluminium and silicon have no solid solubility below the eutectic and

the microstructure solidifies as a silicon particles in an aluminium

matrix.
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Modified alloys have higher toughness and improved tensile strength and

K ductility in comparison to unmodified alloys.




aluminum - 13% silicon alloy
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Al-51 Phase Diagram
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Cast Aluminium

These images show the effect of grain refinement alloying additions in commercial purity
aluminum. The ingot in the upper image has no grain refinement additions made to it. The
grain size is very large, which would result in poor strength and toughness.

The ingot in the lower image has small additions of titanium boride, which is
insoluble in molten aluminium. These particles act as "seeds" for the nucleation of the
crystal grains when the metal solidifies. The number of grains is increased because of the

large number of nucleation sites, and this results in a very small grain size. This is an

K example of grain refinement by heterogeneous nucleation.




(a) Sand-cast 443 aluminum alloy containing coarse silicon and

inclusions. (b) Permanent-mold 443 alloy containing fine dendrite
cells and fine silicon due to faster cooling. (c) Die-cast 443 alloy with a

still finer microstructure (X 350)




/ Aluminium-Silicon Carbide Composite

It is a metal matrix composite.

The microstructure has two main constituents. The darker grey particles
are grains of silicon carbide (SiC). They are dispersed through a matrix of
aluminium.

The silicon carbide reduces the density of the aluminium and improves its

stiffness and wear resistance. The toughness and ductility are reduced by
Kthe ceramic.

/




Al-Cu phase diagram
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Al-4wt%Cu

P particles
(actually submicroscopic)

agrains

(a) Alloy after slow cooling (b) After reheating and rapid cooling (c) After aging
to room temperature

Microstructure of an 85A-15B alloy

(age ha}der{ed) -

The aim of age-hardening is to produce a large number of fine precipitates
in the aluminium grains. These interfere with the movement of dislocations
when the metal yields. This has the effect of increasing the strength of the
alloy. The heat treatment used to produce the precipitates involves a high

temperature solution treatment, quenching and then ageing,



http://pwatlas.mt.umist.ac.uk/internetmicroscope/micrographs/microscopy/dislocations-al.html
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Phase Diagram for Cu-Sn
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This cast sample of a Copper-4wt%Tin bronze shows a grain structure
with traces of cored dendrites.

The coarse grain structure is due to grain growth after solidification.
Coring develops due to non-equilibrium solidification of the casting,

which causes a non-uniform distribution of the alloying elements.




A micrograph of bronze revealing a cast

dendritic structure




copper - 10% tin bearing

bronze containing added lead,
50X

At the bluish-whit delta
microconstituent can be seen. The black
areas in these two photomicrographs are
either shrinkage cavities or lead particles




The coring that i1s evident above at 200X and

at left at 500X shows because the copper
center (core) of each dendrite arm is copper-
rich and etches more slowly than does the
outside of each dendrite arm.




Copper-Phosphorus
Phase Diagram

(Cu-P)

Equilibrium
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Cu4.5wt% P

hypoeutectic alloy

On slow cooling the liquid first solidified at
approximately 940°C as copper rich dendrites. The
composition of the remaining liquid became
increasingly rich in phosphorus until it solidified as a
eutectic (8.38wt% P) at the eutectic temperature of

714°C.

-

Cu 10.5wt% P
hypereutectic alloy

On slow cooling the liquid first solidified
as copper phosphide dendrites at
approximately 850°C. The remaining
liquid solidified as a eutectic at 714°C,




Cu 10wt% Al (Cast)

This is a copper—aluminium bronze containing 10wt% aluminium. A small

amount of iron is often added to act as a grain refiner to improve the

mechanical properties.



http://metallurgyfordummies.com/metallography/cual-microstructure/
http://metallurgyfordummies.com/metallography/cual-microstructure/

Brass (Cu-Zn) Equilibrium Phase Diagram
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QL - Brass: 70 wt.% Cu, 30 wt.% Zn

These straight
edged twins are
annealing twins.
Annealing twins are
stacking defects in
the stacking of the
{111} close-packed
planes.

Continue Q

‘Show Miu:rograph|

This is a single
phase material.
Alpha brass may
have up to 30%
zinc in solid
solution.




/ aff - Brass 60 wt.% Cu, 40wt.% Zn \

| The beta phase |

aff - Brass 60 wt.% Cu, 40wt.% Zn

TN This micrograph is
S oy ¥ N\ of a lower
=X of | magnification than
the sketch. The
'basket-weave'

microstructure is
more obvious here.
See also the
DolTPoMS
micrograph library
entry.

‘ Show Sketch

\ﬁ www.doitpoms.ac.uk

Show Micrograph

\vh www.doitpoms.ac.uk




brass with
40% zinc

The alpha precipitates inside the beta grains
and on the beta grain boundaries. The alpha
appears as long, fat needles in a beta matrix
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Cu 60, Zn 40 (wt%), air cooled - Widmanstatten microstructure

/




Brasse (as-cast)

Cu 89.0-90.0, Zn 8.9-11.0, Fe Cu 97.0-98.0, Zn 1.9-3.0, Fe
0.05, Pb 0.05 0.05, Pb 0.02
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Microstructure Grains of a Cu-15Ni-8Sn alloy which have been

polished and etched to show color in a light microscope. These

grains are thousands of times larger than nanograined material.




silicon bronze




Lead-Tin (Pb-Sn) Equilibrium Phase Diagram

L . - . #4850 RS

L | |

250 \\ e N

o




Lead 20wt% Tin

On slow cooling the liquid metal solidifies as
lead rich dendrites at approximately 265°C.
The remaining liquid becomes increasingly tin
rich with cooling until it solidifies at the
eutectic composition at the eutectic
temperature (183°C).

This alloy has a composition close to the
eutectic. When cooled slowly from the molten
state, it begins to solidify at approximately
210°C by the nucleation and growth of lead
rich dendrites. The remaining liquid becomes
tin rich with decreasing temperature until it
solidifies as the eutectic at the eutectic
temperature (183°C).




Lead 62wt% Tin

This alloy contains 62wt% tin and has the
eutectic composition. The liquid metal
solidifies at the eutectic temperature
(183°C) as a fine dispersion of tin rich
(97.5wt% Sn) and lead rich (8 1wt% Pb)
phases. The solubility of lead in the tin rich
phase decreases rapidly with decreasing
temperature, as does the solubility of tin in
the lead rich phase. At high magnification,
fine precipitates of leaad and tin can be seen

in each constituent of the eutectic.

Lead 80wt% Tin

The first phase to precipitate from the liquid
metal during slow cooling is tin (Sn) rich and
it forms as dendrites. This occurs below
approximately 200°C.The tin concentration in
the liquid decreases as the temperature falls
until it reaches the eutectic composition
(38wt% Pb) at the eutectic temperature of
183°C.The remaining liquid solidifies as a

eutectic.

/
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(a) Microstructure of a superalloy, with carbides at the grain

boundaries and Y’ precipitates in the matrix (X 15,000).

(b) Microstructure of a superalloy aged at two temperatures,

producing both large and small cubical Y* precipitates (X

10,000)




This picture shows an aramid (Kevlar) fibre in a polypropylene matrix. The rough surface of the
fibre has encouraged the formation of crystals in the polypropylene, at the interface between the
fibre and the matrix. This has produced a strong interface and the composite has good strength

and stiffness




® Fibres are often used to improve the strength, stiffness and
toughness of materials. These materials are usually called

fibre-reinforced composites.

® The composite is made of fibres in a weaker matrix. The
fibres can be carbon fibre or aramid (or Kevlar) fibres. These

have very high stitfness and strength.
® The composite will have a high strength and stittness, if the

adhesion or bond between the fibre and matrix is strong.




